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1 Introduction

A quasi-order is a set1 with a binary, transitive, reflexive relation; it is best visualised as a partial

order whose points are replaced by a set of ’equivalent’ points. This may not seem natural but

in the course of this essay it will become evident that quasi-orders are not only natural, but the

correct notion. A well-quasi-order (WQO) is a quasi-order which contains no infinite antichains

and no infinite (strictly) descending sequences. This notion was first mentioned in the late 30’s

by Vázsonyi, who conjectured that the set of finite trees with the embeddability relation is WQO,

and later by Erdös [Erd49], who asked whether A ⊂ N is a WQO implies that the multiplicative

closure of A is a WQO, where N is ordered by divisibility. Terminology for this notion was

introduced by Higman [Hig52] and Erdös and Rado [ER52], though the term ‘well-quasi-order’

was first used by Kruskal in his PhD thesis (1954) and [Kru60], in which he resolved (positively)

Vázsonyi’s conjecture.

A main goal of WQO theory is determining which naturally occuring quasi-orders are WQO. An

example is the class of linear order types (the type of a linear order L, tp(L), is the isomorphism

class of L) with the embeddability relation (if L and M are linear orders then tp(L) ≤ tp(M) if L

is isomorphic to a subset of M). The Dushnik-Miller [DM40] and Sierpinski [Sie50] constructions

provide an example of an infinite descending sequence of linear orders and of an infinite antichain,

so the class of linear order types is not WQO. The question arises as to which subclasses of linear

types are WQO. Fräıssé [Fra48] conjectured that the class of countable types is WQO. He later

extended his conjecture to the class of all ‘scattered’ types, where a linear order is scattered if

you cannot embed Q into it.

The focus of this essay is to present Laver’s [Lav71] proof of Fräıssé’s conjecture. We mention

now that Laver in fact proves that the larger class, M, of σ-scattered types is WQO, where L

is σ-scattered if it can be written as a countable union of scattered linear orders. We briefly

describe the content of the remaining chapters to anticipate the core structure of the proof.

In Chapter 2, we describe WQOs and better-quasi-orders (BQO), not only to establish the results

1Or class
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needed to prove the main result of Laver’s, but also to provide a solid grounding in WQOs and

BQOs 1. BQOs, invented by Nash-Williams [NW65a], are ‘stronger versions’ of WQOs which

have very nice properties. In particular, if Q is a BQO, then many structures built from Q are

also BQOs. This preservation property allows certain inductive proofs to follow through, which

do not for WQOs. Laver’s proof is one such example and as a result it turns out we actually

prove the stronger result that M is BQO.

In Chapter 3, we develop some theory on linear orders. We start by reviewing Hausdorff’s

[Hau1908] recursive characterisation of the class of scattered linear orders, and then generalise

this to obtain a recursive characterisation of M. Laver’s main result is proved by induction on

this characterisation of M.

In Chapter 4, we prove the main result of Laver’s paper. For the induction to work, we actually

need to add another level of generality, namely to consider Q-orders, which are linear orders

whose elements are ‘labelled’ by elements of Q. Writing QM for the class of σ-scattered Q-types,

the main theorem of the paper is:

Theorem Q BQO ⇒ QM BQO.

This is far more general then the original task of proving Fräıssé’s conjecture, which is an

immediate corollary by considering Q = {x}, the one element quasi-order.

In Chapter 5, we end with a few comments on Laver’s paper and by stating a few related results,

which demonstrate the versatility of the ideas in Laver’s paper.

Conventions We write On to denote the class of ordinals, and we equate an ordinal with the

set of all ordinals smaller than it. We write Card to denote the class of cardinals, and RC to

denote the class of regular cardinals. Throughout the paper we assume choice without further

concern. In particular, we identify the cardinal κ with the least ordinal whose cardinality is κ.

1The title of the essay is Wellquasiorders and Betterquasiorders after all!

3



2 WQOs and BQOs

The purpose of this chapter is to provide the necessary background on the theory of WQOs and

BQOs, and also to provide perspective for the main theorem of the essay. The material is based

on [Mil85], [For??] and [Lav71]. A few of the proofs given will be by own, but will certainly not

contain any original ideas. On the other hand, some of the results of the chapter will be stated

without proof, because there is simply too much content.

Definition 〈Q,≤Q〉 is a quasi-order iffdef ≤Q is a binary, reflexive (∀q ∈ Q, q ≤ q), transitive

(q ≤ r ≤ s ⇒ q ≤ s) relation on a class Q. If ≤Q is also anti-symmetric (q ≤ r ≤ q ⇒ q = r)

then 〈Q,≤Q〉 is a partial order.

Definition Two quasi-orders 〈Q,≤Q〉, 〈Q′,≤Q′〉 are isomorphic iffdef there exists an isomor-

phism f : Q→ Q′, i.e. a bijection f : Q→ Q′ such that ∀q, r ∈ Q, q ≤Q r ⇔ f(q) ≤Q′ f(r).

Conventions: We often abbreviate 〈Q,≤Q〉 to Q and use ≤ instead of ≤Q when no confusion

arises. We use QO as an abbreviation for ‘quasi-order‘ or ‘quasi-ordered’. Similary we use PO.

Also, we regard two quasi-orders which are isomorphic to be equal, because for our purposes

they are indistinguishable.

Examples: N,Q and R with the usual ordering (‘less than or equal to’) are POs, and hence QOs.

Do keep in mind that a set can be ordered in more than one way, e.g. N ordered by divisibility

(so n ≤ m iff n divides m) is also a PO.

Remark: The last example highlights the fact that a QO does not have to be total: there can

exist x, y ∈ Q s.t. x 6≤ y and y 6≤ x (in such a situation, we say that x and y are incomparable.)

Example of a QO which is not a PO (nor total): The class of all graphs ordered by embeddability

(so G ≤ G′ iff G is isomorphic to a subgraph of G′) is a QO, but not anti-symmetric (let G be

the complete graph on ℵ0 vertices and G′ be the graph obtained by removing one edge from G)

nor total (let G = K3 and G′ be the graph on four vertices and zero edges).

Definition Let Q be a QO. We say q, r ∈ Q are equivalent, written q ≡ r, iffdef q ≤ r and r ≤ q.
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We write q < r iffdef q ≤ r and r 6≤ q.

Warning: The last definition can trip people up, as they are used to thinking ‘if q 6= r and q ≤ r

then q < r’, which is not true in general for QOs.

If Q is QO, it is easy to see that ≡ is an equivalence relation. It is also easy to see that ≤Q

induces an ordering on the quotient Q/ ≡1, and further that this makes Q/ ≡ into a PO. This

means you can think of a QO as a PO whose elements are sets. Visually, imagine taking a Hasse

diagram and replacing each dot with a bunch of dots.

Definition A sequence (of length ω) in Q isdef a function f : ω → Q. A sequence is good

iffdef there are i < j < ω s.t. f(i) ≤ f(j); a sequence is bad otherwise. A sequence is perfect

iffdeff(0) ≤ f(1) ≤ f(2) ≤ . . .. A sequence f ′ is a subsequence of f iffdeff
′ = f ◦ g for some

strictly increasing g : ω → ω.

Definition A ⊆ Q is an antichain iffdef the elements of A are pairwise incomparable. An

ω-sequence f is strictly decreasing iffdef for all i < j < ω, f(j) < f(i).

Definition Let X ⊆ A ⊆ Q. X is a basis for A iffdefA ⊆ {q ∈ Q : x ≤ q for some x ∈ X}.

Lemma 2.1. Let Q be QO. The following are equivalent:

(i) Q has no strictly decreasing sequences and does not contain any infinite antichains.

(ii) Every sequence contains a perfect subsequence.

(iii) There are no bad sequences in Q.

(iv) For all A ⊆ Q, A has a finite basis.

Proof We will be using Ramsey’s Theorem [Ram30]: If [ω](2) is finitely coloured, then there

exists a monochromatic infinite subset.

1Formally, this is dodgy because we could end up having a class which has proper classes as elements. One

fixes this by defining Q/ ≡ to be the subset of Q formed by picking one element from each equivalence class.
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¬(i)⇒ ¬(iv): If A ⊆ q is (the range of) a strictly decreasing sequence or is an infinite antichain,

then A clearly has no finite basis.

¬(iv) ⇒ ¬(iii): Let A ⊆ Q not have a finite basis. Then construct a bad sequence f : ω → Q

recursively: Suppose f has been defined on {0, 1, . . . , n}. Since A has no finite basis, ∃a ∈ A s.t.

f(i) 6≤ a for i = 0, 1, . . . , n, and so let f(n+ 1) = a. It is clear by construction that f is bad.

¬(iii) ⇒ ¬(ii) Any subsequence of a bad ω-sequence is bad.

¬(ii) ⇒ ¬(i): Let f be a sequence which does not contain a perfect subsequence. Now colour

{i, j} (WLOG i < j): blue if f(i) ≤ f(j),

red if f(j) < f(i),

green if f(i) and f(j) are incomparable.

By Ramsey’s Theorem, there exists an infinite monochromatic subset. It cannot be blue, as

that would give a perfect subsequence. If it is red, then we get a strictly decreasing sequence.

If it is green, we get an infinite antichain. �

Definition A QO Q is a well-quasi-order (WQO) iffdefQ satisfies the conditions of Lemma 2.1.

The next lemma collects some basic results:

Lemma 2.2. (i) Any homomorphic image and any subset of a WQO is WQO.

(ii) If ≤1, ≤2 both quasi-order Q and q ≤1 r ⇒ q ≤2 r, then 〈Q,≤1〉 WQO ⇒ 〈Q,≤2〉 WQO.

(iii) If Q1, Q2 ⊆ Q are both WQO, then Q1 ∪Q2 is WQO.

(iv) If Q1, Q2 are both WQO, then so is Q1 × Q2 (where 〈q, r〉 ≤ 〈q′, r′〉 iffdef q ≤1 q
′ and

r ≤2 r
′).

Proof (i), (ii) and (iii) are immediate from the definition of WQO. For (iv), we will show that

all sequences in Q1 × Q2 are good, so let f = 〈f1, f2〉 be a sequence in Q. f1 is a sequence in

the WQO Q1, so there exists a perfect subsequence f1 ◦ g, so ∀i < j, f1(g(i)) ≤1 f1(g(j)). Now

f2 ◦ g is a sequence in the WQO Q2, so there exists a < b s.t. f2(g(a)) ≤2 f2(g(b)). But then
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f(g(a)) ≤ f(g(b)) and g(a) < g(b), so f is good. �

Definition Let Q be a QO and q ∈ Q. Qq =def {r ∈ Q : q 6≤ r}.

The next theorem is a direct analogue of ordinal induction:

Theorem 2.3. (Induction on WQOs) Suppose P is a property where for all WQOs Q,
(
∀q ∈

Q (P (Qq)
)
⇒ P (Q). Then P (Q) for all WQOs Q.

Proof Suppose the conclusion fails and let Q WQO be such that ¬P (Q). We will construct

a bad sequence in Q, which contradicts Q WQO and hence giving us the theorem. By the

condition on P , there must exist q0 ∈ Q s.t. ¬P (Qq0). Let f(0) = q0. Again by the condition

on P , there must exist q1 ∈ Qq0 s.t. ¬P ((Qq0)q1). Let f(1) = q1. Continuing in this fashion

gives us a bad sequence, as desired. �

Given a QO Q, there are various constructions, F (Q) say, where the order on Q induces a natural

ordering on F (Q), (in [For??], Forster uses the phrase ‘lifting the order from Q to F (Q)’). One

then asks whether Q WQO implies F (Q) is WQO, for example, Erdös [Erd49] asked if A ⊂ N is

a WQO implies that the multiplicative closure of A is a WQO, where N is ordered by divisibility.

The first construcion we consider is the set of sequences in Q:

Definition Let Q be QO. For α ∈ On, Qα =def {f s.t. f : α→ Q}, the set of sequences of length

α in Q. Q<α =def
⋃
β<αQ

β. Lastly, QOn =def
⋃
α∈ OnQ

α. The order ≤Q induces an order ≤

on QOn as follows: (f : α→ Q) ≤ (f ′ : α′ → Q) iffdef ∃g : α→ α′ s.t. ∀β ∈ α, f(β) ≤Q f ′(g(β)).

Remark: In words, f < f ′ iffdef there is a subsequence in f ′ of length α which is pointwise

‘greater than’ f . In [For??], Forster uses the visual phrase ‘f stretches into f ′’ if f ≤ f ′.

Lemma 2.4. Q WQO ⇒ Q<ω WQO.

Proof Suppose the conclusion is false, so there exists a bad sequence in Q<ω. Choose a bad

sequence such that its first term, f0 say, has minimal length. Then from all the bad sequences

starting with f0, choose one such that its second term, f1 say, has minimal length. Continue
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so that we get a minimal bad sequence f(0), f(1), f(2), . . . in the sense that if f(0), . . . , f(i −

1), g(i), g(i+ 1), . . . is bad, then the length of g(i) is at least as big as the length of f(i).

Each f(i) is non-empty, otherwise the sequence would not be bad, so let q(i) be the last term of

each f(i) and let g(i) be obtained by removing the last term from f(i). Since Q is WQO, there

exists a perfect subsequence of the q’s, WLOG, q(i), q(i+ 1), q(i+ 2), . . ., for some i < ω.

Now consider the sequence f(0), . . . , f(i − 1), g(i), g(i + 1), . . .. By minimality of the f ’s, this

sequence is good. Also, g(j′) ≤ f(j′) for any j′, so by the badness of the f ’s, we do not have

f(j) ≤ g(j′) for any j < i ≤ j′. Hence, there exists j < k s.t. g(j) ≤ g(k). But we also have

q(j) ≤ q(k), so f(j) ≤ f(k), contradicting f(0), f(1), . . . bad. �

Remark: The idea of constructing a minimal bad sequence is very important. An analogue of

this is constructed in BQO theory and proves to be very fruitful.

Write Fin(Q(−)) for the sequences of finite range (and of appropriate length) in Q. Rado

[Rad54] extended Lemma 2.4 to Fin(Q<ω
3
), and Erdös and Rado [ER59] extended it further to

Fin(Q<ω
ω
). Rado [Rad54] conjectured that Q WQO ⇒ Fin(QOn) WQO, and this was proved

by Nash-Williams [NW65a].

We next discuss Vázsonyi’s conjecture, that the set of finite trees is WQO by embeddability,

where a tree is a connected, acyclic graph. As is common in mathematics, it turns out to be

easier to the prove the result for a more general construction. In [Kru60], Kruskal defines a

labelled structured tree over X to be a tree T where:

(i) a particular vertex is selected as the root of the tree,

(ii) all the edges are directed so that they point away from this root,

(iii) for each v ∈ T , the set of edges whose initial vertex is v is linear ordered, and

(iv) each v ∈ T is labelled by an element from a set X.

He then proves the ‘Tree Theorem’ which states that X WQO ⇒ the set of finite labelled

structured trees over X is WQO. This proves Vázsonyi’s conjecture by taking X to be the one
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element order.

Nash-Williams [NW63] found a much simpler proof only requiring a tree T to have the additional

properties (i) and (ii). Furthermore, the proof can be easily modified to prove the full Tree

Theorem. Nash-Williams’ proof has since then been refined, mainly by defining trees in a more

natural (and general) way.

Definition 〈T,≤〉 is a tree iffdef 〈T,≤〉 is a PO s.t. ∀x ∈ T, {y : y ≤ x} is well-ordered, and,

∃ρ(T ) ∈ T s.t. ρ(T ) ≤ x,∀x ∈ T . ρ(T ) is called the root of the tree. y is a successor of x

iffdefx < y. y is an immediate successor of x if x < y and there is no z ∈ T s.t. x < z < y. S(x)

isdef the set of immediate successors of x. The branch at x, br(x), isdef the subtree {y : x ≤ y}

with x as its root.

Definition Let τ be the set of trees which have no paths of length > w. For x, y ∈ T ∈ τ ,

x ∧ y =def the glb of x and y (which exists since T has no paths of length > w). We quasi-

order τ as follows: for T, T ′ ∈ τ , T ≤ T ′ iffdef∃f : T → T ′ injective and s.t. for all x, y ∈

T ′, f(x) ∧ f(y) = f(x ∧ y).

Remark: f(x) ∧ f(y) = f(x ∧ y) implies that f is order-preserving and that if y, z are dis-

tinct immediate successors of x, then f(x) and f(y) are distinct successors of f(x). As with

embeddability for sequences, you can visualise T ≤ T ′ by thinking ‘T stretches into T ′’.

Lemma 2.5. τ ′, the set of finite trees in τ , is WQO.

Proof We omit the proof, other than to say that the proof has the same structure as in Lemma

2.4: one constructs a minimal bad sequence of trees T0, ... and in place of g(i) and q(i), you

consider {br(x) : x is an immediate succesor of ρ(Ti)} and ρ(Ti). �

We now go on to describe the natural orderings induced on the powerset of a quasi-order:

Definition Let Q be a QO. Then we quasi-order P(Q) as follows: A ≤m B iffdef ∃f : A→ B

s.t. ∀a ∈ A, a ≤Q f(a). If in addition f is injective, then A ≤l B.

Notice that since P(Q) is QO, we can repeat the construction to get a quasi-order on P(P(Q)),
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and repeating again gives a quasi-order on P(P(P(Q))), and so on, defining a quasi-order on

Pn(Q) for every n, where Pn(Q) is defined in the obvious way.

One can continue this process, defining an order on
⋃
n<ω Pn(Q), but the formal definition is not

(immediately) intuitive. The main idea is that Pn(Q) can be naturally embedded into Pn+1(Q)

by the function A ∈ Pn(Q) 7→ {A} ∈ Pn+1(Q). So by considering A and {A} and {{A}} and

{{{A}}} and . . . as all equivalent (for each A), we can think of
⋃
n<ω Pn(Q) as a union of a

nested sequence of quasi-orders. This is formalised in the next definition, where we actually

extend the construction to all ordinals.

Definition POn(Q) =
⋃
α∈On Pα(Q), where Pα(Q) is defined recursively: P0(Q) = Q, Pα+1(Q) =

P(Pα(Q)) and for limit α > 0,Pα(Q) =
⋃
β<α Pβ(Q). To define the ordering on POn(Q), let

X,Y ∈ POn(Q) and let α, β be minimal such that X ∈ Pα(Q) and Y ∈ Pβ(Q). Then, by

recursion on (α, β), X ≤m Y iffdef :

(i) α = 0, β = 0 and X ≤Q Y,

(ii) α = 0, β > 0 and X ≤m Y ′ for some Y ′ ∈ Y,

(iii) α > 0, β > 0 and ∃f : X → Y such that ∀X ′ ∈ X,X ′ ≤m f(X ′).

≤l is defined similarly, but with the added requirement that f is injective in (iii). This construc-

tion is very relevant for BQOs. Before going on to discuss BQOs, we give for completeness one

final result on WQOs:

Lemma 2.6. Q WQO ⇒ [Q]<ω (the finite subsets of Q) ordered by ≤m or ≤l WQO

Proof Just as in Lemma 2.4. �

Notice how all our results on WQOs seem to depend on finiteness. One is inclined to ask what

happens if we take away the finiteness conditions. In [Rad54], Rado constructed a WQO Q

s.t. Qω is not WQO, so finiteness is a genuine limitation of WQO theory. Furthermore, Rado’s

example is canonical in the sense that if Q is WQO but Qω is not, then Q contains an isomorphic

10



copy of Rado’s example (also proven in [Rad54]). His example is easy to define, though, it is

best understood with a diagram1, so we direct the reader to [Mil85] p.492.

From Rado’s example, it is clear that to guarantee P(Q) or Qω is WQO, we need some condition

on Q that is stronger than being WQO. Being well-ordered (WO) was such a condition: it is

easy to show that Q WO ⇒ P(Q) WQO and in [Mil68] Milner showed that Q WO ⇒ Q<ω
3

WQO and further conjectured that Q WO ⇒ QOn WQO. However, most objects of interest are

not WO, so these results are of limited consequence.

The breakthrough was made by Nash-Williams with his invention of a better-quasi-order (BQO),

which lies strictly in between WQOs and WOs. He invented it as a result of his efforts to show

that the class τ is WQO, greatly generalising Kruskal’s result. In [NW65a], where he first

introduces BQOs, he actually proves the stronger result that τ is BQO. In his following paper

[NW65b], he settles Milner’s conjecture by proving Q BQO ⇒ QOn BQO.

To be able to define a BQO, we need some preliminary definitions. For convenience, we identify

subsets of ω with strictly increasing sequences.

Definition If t, u ⊆ ω then t ≺ u iffdef t is an initial segment of u. If t, u ∈ [ω]<ω then t / u

iffdef ∃i1, . . . , im s.t. t = {i1, ..., ik} for some k ≤ m, and u = {i2, . . . , im}.

Definition An infinite B ⊂ [ω]<ω is a block iffdef ∀X ∈
[⋃

B
]ω ∃!b ∈ B s.t. b ≺ X. If in

addition B is a ⊆-antichain then B is a barrier.

Examples: [ω]n for any n ∈ ω is a barrier. If B is a block and A ∈
[⋃

B
]ω

, then {b ∈ B : b ⊂ A}

is a block.

Definition Let Q be a QO. Then a Q-pattern isdef a function f : B → Q where B is a barrier.

A Q-pattern is good iffdef there are b / b′ s.t. f(b) ≤ f(b′); a Q-pattern is bad otherwise. A

Q-pattern is perfect iffdef b / b
′ implies f(b) ≤ f(b′).

Definition Q is better-quasi-ordered (BQO) iffdef there are no bad Q-patterns.

1Unfortunately, my LATEX skills are not yet good enough to handle diagrams.
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Nash-Williams said in his paper that he defined a BQO by extrapolating from Rado’s example

conditions on Q that would ensure Pn(Q) is WQO, for all n < ω under the ≤m ordering. He

also claimed without proof that Q BQO iff Pα(Q) WQO for all α ∈ On. Laver [Lav71] and

Pouzet [Pou72] obtained Q BQO iff Pω1(Q) is WQO. To develop an intuition for BQOs, I highly

recommend reading [For??].

The next result due to Galvin and Prikry [GP73] is effectively the analogue of Ramsey’s Theorem

for BQO theory. The proof is omitted.

Theorem 2.7. If Y ⊆ [ω]<ω then there exists A ∈ [ω]ω s.t. either Y ∩ [A]<ω = ∅, or, ∀X ∈

[A]ω, ∃y ∈ Y s.t. y ≺ X.

Corollary 2.8. If B is a block and B1 ∪B2 = B, then B1 or B2 contains a block C.

Proof WLOG
⋃
B = ω. Apply Thm 2.7 to Y = B1 to obtain A. Let C = {b ∈ B : b ⊂ A} so

C is a block. Note that
⋃
C ⊆ A. If Y ∩ [A]<ω = ∅, then B1 ∩C = ∅ so (and because

⋃
B = ω)

C ⊆ B2.

On the other hand, suppose ∀X ∈ [A]ω,∃y ∈ Y s.t. y ≺ X. Now let c ∈ C and X ∈
[⋃

C
]ω

s.t. c ≺ X. Since B is a block, if b ∈ B and b ≺ X, then b = c. But
⋃
C ⊆ A, so X ∈ [A]ω, so

∃y ∈ Y = B1 s.t. y ≺ X, so c = y ∈ B1. Hence, C ⊆ B1. �

Corollary 2.9. Every block contains a barrier

Proof Let B be a block (WLOG
⋃
B = ω) and Y ⊂ B contain all the ⊆-minimal elements

of B, so in particular, Y is a ⊆-antichain. Let A be the set obtained by applying Thm 2.7 to

Y , and let C = {b ∈ B : b ⊂ A}; C is a block. Since any ⊆-minimal element of C is in Y , we

cannot have Y ∩ [A]<ω = ∅, hence ∀X ∈ [A]ω, ∃y ∈ Y s.t. y ≺ X. As in Cor 2.8, C ⊆ Y , so C

is a barrier. �

Corollary 2.10. Every Q-pattern contains a bad or a perfect sub-pattern.

Proof Let f : B → Q be a Q-pattern. Let B′ = {b1 ∪ b2 : b1, b2 ∈ B, b1 / b2}. Given b ∈ B′

there are unique b1, b2 ∈ B s.t. b = b1 ∪ b2: b1 will be the unique b′ ∈ B s.t. b′ ≺ b (unique
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since B is a barrier) and b2 has to equal b−min(b). Next we claim that B′ is a barrier. To prove

the claim, let X ∈
[⋃

B′
]ω

. Then X,X−min(X) ∈
[⋃

B
]ω

so ∃! b1, b2 ∈ B s.t. b1 ≺ X and

b2 ≺ X−min(X). But then b = b1∪ b2 is the unique b ∈ B′ s.t. b ≺ X, so B′ is a block. If b ⊆ b′

are both in B′, then b2 ⊆ b′2 are both in B, contradicting B ⊆-minimal, hence B′ is ⊆-minimal,

thus proving the claim.

Now write B′ as R ∪ S where R = {b ∈ B′ : f(b1) ≤ f(b2)} and S = {b ∈ B′ : f(b1) 6≤ f(b2)}.

By Cor 2.8 and 2.9, either R or S contains a barrier C. Let C ′ =
⋃
b∈C{b1, b2}. But then, f

restricted to C ′ is a perfect or a bad sub-pattern of f depending on whether C ⊆ R or S. �

The next theorem collects some basic results on BQOs. These are particularly important for us

as we make direct use of them in Chapter 4. In the statement of the next theorem, a * indicates

that no proof is provided.

Theorem 2.11. (i) Q BQO ⇒ Q WQO.

(ii) Q well ordered ⇒ Q BQO.

(iii) Q = Q1 ∪Q2 and Q1, Q2 BQO ⇒ Q BQO.

(iv) Q1, Q2 BQO ⇒ Q = Q1 ×Q2 BQO.

(v)* Q BQO ⇒ Q<ω BQO.

(vi) Q BQO ⇒ P(Q) BQO (under ≤m or ≤l).

(vii) Q BQO, f : Q→ Q′ order preserving and ∀q∈Q′ ∃g(q)∈Q s.t. f(g(q)) ≡ q ⇒ Q′ BQO.

Proof (i) By considering the barrier [ω]1, it is immediate that a bad sequence is a bad Q-pattern.

(ii) Suppose Q is WO and f : B → Q is any Q-pattern. Then there exists b ∈ B s.t. f(b) ≤ f(b′)

for all b′ ∈ B. Now let X ∈
[⋃

B
]ω

be such that b−min(b) is an initial segment of X. By the

definition of a block, there exists b′ ∈ B s.t. b′ is an initial segment of X. By definition of a

barrier, b′ 6⊆ b−min(b). Hence we have b / b′ and f(b) ≤ f(b′), so f is good, so Q is BQO.

(iii) Suppose f : B → Q is a bad Q-pattern. Let B1 = f−1(Q1) and B2 = f−1(Q2). Then by

Cor 2.8 and 2.9, ∃ barrier B′ ⊆ Bi for some i. But then f : B′ → Qi is a bad Qi-pattern.

(iv) Let f : B → Q be a Q-pattern. Then fi = πi ◦ f is a Qi-pattern. By Cor 2.10 and Q1
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BQO, ∃ sub-barrier B′ of B s.t f1|B′ is a perfect Q1-pattern, so for all b/b′ ∈ B′, f1(b) ≤1 f1(b
′).

Since Q2 is BQO, f2|B′ is a good Q2-pattern so ∃ b / b′ ∈ B′ s.t. f2(b) ≤2 f2(b
′). Hence, we have

b / b′ ∈ B s.t. f(b) ≤ f(b′), so f is a good Q-pattern.

(vi) Suppose f : B → P(Q) is a bad P(Q)-pattern. As in the proof of Cor 2.10, let B′ = {b1∪b2 :

b1, b2 ∈ B, b1 / b2}. We will construct a bad Q-pattern g : B′ → Q as follows. Let b ∈ B′ and

let b1 / b2 ∈ B be unique such that b = b1 ∪ b2. Since f(b1) 6≤m f(b2), there is a g(b) ∈ f(b1) s.t.

g(b) 6≤ q for all q ∈ f(b2). Now if b / c ∈ B′, then b2 = c1 so g(b) 6≤ g(c), hence, g is bad.

(vii) If h : B → Q′ is bad, then g ◦ h : B → Q is bad. �

(vii) is known as the ‘homomorphism property’ and (vi) is a distinguishing factor for BQOs. In

fact, much more than (vi) is true: Laver [Lav78] showed that Q BQO ⇒ 〈POn(Q),≤l〉 BQO.

(v) is also subsumed by a much bigger result: Nash-Williams [NW68] proved Q BQO ⇒ QOn

BQO. These two results are proved by using a generalised version of the ‘minimal bad sequence’

idea that we used for WQOs.

We end the section by stating a generalisation of Nash-Williams result, τ is BQO, that we need

in Chapter 4.

Definition (T, l) is a Q-tree iffdefT is a tree and l : T → q. Intuitively, l is labelling the vertices

of T with elements of Q. Let τQ be the set of Q-trees (T, l) where T ∈ τ . Quasi-order τQ as

follows: (T, l) ≤ (T ′, l′) iffdef T ≤ T ′ by a function f s.t. l(t) ≤Q l′(f(t)) for all t ∈ T .

Theorem 2.12. (Laver [Lav71]) Q BQO ⇒ τQ BQO.

However, for our purposes, we want a slightly modified embeddability relation on our Q-trees:

Definition (T, l) ≤m (T ′, l′) iffdef there is a strictly increasing f : T → T ′ s.t. l(x) ≤Q l′(f(x))

for all x ∈ T . (The difference is that f need not be injective, nor does it have to send distinct

immediate successors of x to distinct successors of f(x).)

Corollary 2.13. Q BQO ⇒ 〈τQ,≤m〉 BQO.

Proof (T, l) ≤ (T ′, l′)⇒ (T, l) ≤m (T ′, l′), so it is immediate from Thm 2.12 and the definition

of BQO.
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3 Linear Orders

The main goal of this chapter is to give a recursive characterisation ofM, the class of σ-scattered

linear orders. We start by recalling/introducing the core definitions and constructions.

Definition A linear order 〈L,≤〉 is a set L equipped with a binary, transitive, anti-symmetric,

total relation ≤. 〈L,≤L〉 and 〈M,≤M 〉 are isomorphic if there is a bijection f : L → M s.t.

a ≤L b iff f(a) ≤M f(b). The (order) type of L, written tp(L), is the class of linear orders

isomorphic to L.

Write LO for the class of all (linear) order types. In this essay L,M,N and φ, ψ, θ will range

over linear orders and order types respectively.

Definition For φ, ψ ∈ LO, φ ≤ ψ iffdef ∃L,M and f : L→M such that tp(L) = φ, tp(M) = ψ

and f embeds L into M , i.e. f is injective and order preserving.

The fact that 〈LO,≤〉 is a quasi-order is immediate from the definition. Note that ≤ is not

anti-symmetric (consider intervals [0, 1) and (0, 1]) nor total (consider N and Z\N), so LO is

another example of a QO which is not a PO.

Definition The ordered sum
∑

x∈LMx is the linear order obtained by replacing each x ∈ L

by Mx. (Formally,
∑

x∈LMx is the set {(x, y) : x ∈ L, y ∈ Mx} ordered lexicographically).∑
x∈L ψx is the type of

∑
x∈LMx where tp(Mx) = ψx for all x. The product ψ · φ equalsdef∑

x∈L ψx where tp(L) = φ and ψx = ψ for all x. (Think ‘φ copies of ψ’.)

Definition The converse of 〈L,≤〉 is 〈L,≥〉, where x ≥ y iffdef y ≤ x. The converse of the type

φ, written φ∗, is the type of 〈L,≥〉 where tp(〈L,≤〉) = φ. Write On∗ for the class of converses

of well-orders.

Definition We write η for the order type of Q, and say φ, resp. L, is scattered iffdef η 6≤ φ,

resp. Q 6≤ L. We write S for the class of all scattered types.

Examples: Any finite linear order is scattered. If α ∈ On, then α, resp. α∗ is scattered since all

subsets of α, resp. α∗, have a minimum, resp. maximum, element.
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Terminology: We say ψ is a ‘φ sum’ if ψ =
∑

x∈L ψx where tp(L) = φ. Furthermore, if φ is in

On / On∗ / S / a subclass R of LO, we say ψ is a ‘well ordered / conversely well ordered /

scattered /R sum’.

The following lemma collects some important basic results:

Lemma 3.1. (i) tp(L) = η iff L is countable, dense and unbounded.

(ii) If η ≤
∑

x∈L tp(Mx), then either η ≤ tp(L) or η ≤ tp(Mx) for some x. (‘A scattered sum

of scattered types is scattered.’)

(iii) If κ ∈ RC and κ ≤
∑

x∈L tp(Ml), then either κ ≤ tp(L) or κ ≤ tp(Mx) for some x.

(iv) If κ ∈ RC,α < κ,L =
⋃
β<α Lβ and κ ≤ tp(L), then κ <tp(Lβ) for some β.

(v) If κ ∈ RC, tp(L) ∈ S and |L| ≥ κ, then κ or κ∗ ≤ tp(L).

Remark: The proof of (v) is given later, as it uses Thm 3.2, which in turn uses (ii) above.

Proof (i) If tp(L) = η, then L is countable, dense and unbounded, because Q is. Conversely,

suppose L is countable, dense and unbounded. Let {l0, l1, ...} and {q0, q1, ...} be enumerations

of L and Q. Then construct an isomorphism f : L→ Q inductively:

f(l0) = q0

f(ln) = qk,where k is the least so that f is order preserving and injective.

Such a k exists at each stage, since Q is dense and unbounded, so f is well-defined. f is injective

and order-preserving by construction. Suppose f is not surjective; then there is a least k such

that qk is not in the image of f . WLOG, f(li) = qi for all i < k, and q0 < ... < qk−1. Now,

either qi < qk < qi+1 for some i, or, qi < qk∀i < k, or, qk < qi∀i < k. In the first case, since L is

dense, there exists n > k s.t. li < ln < lj ; choose n to be the least such. But then by definition

of f , f(ln) = qk. Contradiction. Similarly for the other two cases, but you use the fact L is

unbounded. Hence, f is indeed an isomorphism from L to Q.

(ii) Suppose f is an embedding from Q to
∑

l∈LMl. Let Ax = {q ∈ Q : f(q) ∈ Mx}. Split into

two cases: whether or not there is an x ∈ L such that |Ax| ≥ 2.
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If so, let p, q ∈ Q distinct and x ∈ L s.t. p, q ∈ Ax. Since f is order preserving, (and WLOG

p < q), the interval (p, q) must be a subset of Ax and so f |(p,q) : (p, q) → Mx is an embedding.

Observe that (p, q) is countable, dense and unbounded, so by (i), tp((p, q))=η, so η ≤ tp(Mx).

If not, then ∀x ∈ L, |Ax| ≤ 1. Then, let g : Q → L be the function sending q to the x ∈ L s.t.

q ∈ Ax. Clearly, g is an embedding of Q into L, so η ≤ tp(L).

(iii) Suppose we have an embedding f : κ →
∑

x∈LMx. Since κ is isomorphic to any subset A

of κ of size κ (this is seen by enumerating A as A = {αγ : γ < κ} where α0 < α1 < . . . ), it

suffices to show that for some A ⊆ κ of size κ, either A ≤ L or A ≤Mx for some x.

Let Ax = {α ∈ κ : f(α) ∈Mx}. Let L′ = {x ∈ L : Ax 6= ∅}. Observe that x < x′ iff all elements

of Ax are less than all elements of Ax′ , by the definition of an ordered sum together with the

fact that f is order preserving. Now, κ =
∑

x∈L′ Al and because κ is regular, |Ax| = κ for some

x, or, |L′| = κ.

If |Ax| = κ for some x, then f restricted to Ax is an embedding of Ax (a subset of size κ) into

Mx.

If |L′| = κ, then for each x ∈ L′, let yx be any member of Ax. Let Y =
⋃
x∈L′ yx. We have

|Y | = |L′| = κ. Let g : Y → L, g(yx) = x . This is an embedding from Y into L (order preserving

because of the observation made two paragraphs earlier).

(iv) Suppose we have an embedding f : κ→
⋃
β<α Lβ. For each β < α, let Aβ = {γ ∈ κ : f(γ) ∈

Lβ and f(γ) 6∈ Lδ, ∀δ < β}. Then
⋃
β<αAβ = κ. Since κ is regular and α < κ, |Aβ| = κ for

some β. Then f restricted to Aβ is an embedding of Aβ into Lβ, so η ≤ tp(Lβ). �

A (neat!) corollary of (i) is that there is an embedding from any countable linear order L into

Q. You consider L′ =
∑

x∈LQx, where ∀x,Qx = Q. You can embed L into L′ (map x to any

element of Qx) and moreover, L′ is countable, dense and unbounded, so by (i), L′ is isomorphic

to Q. Hence, you get an embedding from L to Q.

The next result is Huasdorff’s recursive characterisation of S. The proof given is my own,
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mirroring the proof of Thm 3.81 (the recursive characterisation of M).

Theorem 3.2. S =
⋃
α∈On Sα where Sα is defined recursively: S0 = {0, 1}, and for α > 0,Sα ={

φ ∈ LO: φ is a well ordered or conversely well ordered sum of elements in
⋃
β<α Sβ

}
.

Proof Let T =
⋃
α∈On Sα. We will show that S ⊆ T and T ⊆ S.

T ⊆ S: We show, by induction on On, that Sα ⊂ S ∀α ∈ On. 0 and 1 are trivially scattered,

so S0 ⊆ S. For α > 0, φ ∈ Sα means that φ is a (conversely) well ordered sum of elements of⋃
β<α Sβ. In particular, by the inductive hypothesis, φ is a scattered sum of scattered types, so

by Lemma 3.1 (i), φ is scattered, i.e. φ ∈ S.

S ⊆ T : First we claim that a T -sum of elements of T is in T . We prove this by induction on α on

the proposition: An Sα-sum of elements of T is in T . This is true when α = 0, so suppose α > 0,

tp(M) ∈ Sα, and φx ∈ T for all x ∈ M . By definition, M =
∑

δ∈γMδ, where Mδ ∈
⋃
β<α Sβ

and γ ∈ On (the case γ ∈ On∗ is symmetric). Then,

φ (say) =
∑
x∈M

φx =
∑
δ∈γ

∑
x∈Mδ

φx

=
∑
δ∈γ

φ′δ, where φ′δ =
∑
x∈Mδ

φx.

By the induction hypothesis, φ′δ ∈ T for all δ. Hence, ∀δ φ′δ ∈ Sζδ for some ζδ ∈ On. Hence,

∀δ, φ′δ ∈ Sζ where ζ =supδ∈γζδ. But then φ ∈ Sζ+ , so φ ∈ T . Thus the claim is true.

Now, let L be a linear order with tp(L) ∈ S. Define a relation ∼ on L: let x ∼ y iff x = y, or,

x < y and tp((x, y)) ∈ T , or, y < x and x ∼ y. It is clear that ∼ is an equivalence relation which

partitions L into intervals. We claim that if |x| is an equivalence class of ∼, then tp(|x|) ∈ T .

To show this, let 〈xδ : δ ∈ γ〉, resp. 〈x′δ′ : δ′ ∈ γ′〉 be a strictly increasing, resp. decreasing,

unbounded sequence in |x| s.t. x0 = x = x′0. Then |x| can be written as a (γ′∗ + 1 + γ)-sum of

intervals:

|x| =

( ∑
δ′∗∈γ′∗

[
x′δ′+ , x

′
δ′
))

+ x+

( ∑
δ∗∈γ∗

(
xδ, xδ+

])
By the definition of ∼, all these intervals have type in T , and (γ′∗ + 1 + γ) ∈ T , hence |x| is a

T -sum of elements of T , so by the previous claim, tp(|x|) ∈ T , thus proving this claim.

1Though for the reader, the proof of Thm 3.8 will be doing the mirroring.
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We now claim that there is in fact only one equivalence class, L, which gives the theorem

because, by the second claim, we would get tp(L) ∈ T . So suppose the claim is false. Let L′ be

the set of equivalence classes of L, ordered by |x| ≤ |y| iff x ≤ y. For any distinct |x|, |y| ∈ L′,

tp((|x|, |y|)) 6∈ T (∗). Otherwise tp(x, y) would be a T sum of elements of T , which, by the first

claim, contradicts x 6∼ y.

On the other hand, L′ is scattered because L is scattered. Hence, there exists |x|, |y| distinct

such that (|x|, |y|) is empty; otherwise L′ would contain a dense, unbounded countable subset,

which, by Lemma 3.1 (i), contradicts L′ scattered. But such an interval has type 0, which is

certainly in T , contradicting (∗). �

Proof of Lemma 3.1 (v) (If κ ∈ RC, tp(L) ∈ S and |L| ≥ κ, then κ or κ∗ ≤ tp(L))

By Thm 3.2, (and taking the contrapositive), this is equivalent to proving that for every α, if

κ ∈ RC, tp(L) ∈ Sα and κ, κ∗ 6≤ tp(L), then, |L| < κ.

This trivially holds for α = 0, so let α > 0, tp(L) ∈ Sα and κ ∈ RC be such that κ, κ∗ 6≤ tp(L).

By the definition of Sα, L =
∑

δ∈γ Lδ, where tp(Lδ) ∈
⋃
β<α Sβ and WLOG γ ∈ On (the case

γ ∈ On∗ is symmetric). Then,

κ, κ∗ 6≤ tp(L) ⇒ κ, κ∗ 6≤ tp(Lδ) ∀δ and κ, κ∗ 6≤ γ

⇒ |Lδ| < κ ∀δ and |γ| < κ (by the induction hypothesis)

⇒ |L| < κ (because κ is regular), as required.
�

We now define M, the class of σ-scattered order types:

Definition φ ∈M iffdef tp(L) = φ⇒ ∃L0, L1, ... s.t. L =
⋃
n∈ω Ln and tp(Ln) ∈ S ∀n.

Examples: All scattered types are in M. η is in M. An M-sum of elements of M is in M

(simple rearranging of unions and sums, and use of the fact that a scattered sum of scattered

types is scattered).

Before continuing, we sketch what will follow. For particular pairs of cardinals 〈α, β〉, we con-
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struct types ηαβ ∈ M. A key feature is that φ ∈ M iff φ ≤ ηαβ for some ηαβ. Then Dαβ is

defined (it is just {φ : φ < ηαβ}) and a recursive construction of Dαβ is given, which is the

recursive characterisation of M that has been previously mentioned.

The following definitions will seem quite random, but it will all fit into place in the lemmas

which follow.

Definition We say 〈α, β〉 ∈ Card×Card is admissable iffdef α, β are regular and uncountable,

and max{α, β} is a succesor cardinal.

Definition We define a type σαβ for every admissable 〈α, β〉 as follows:

For succesor cardinals α = γ+ and β = δ+, σαβ = γ∗ · δ.

For α a limit cardinal (hence β = δ+ and α < β), σαβ =
∑

x∈M φx, where tp(M) = δ, φx < α∗

for all m, and for all α′ < α∗,∃x s.t. φx ≥ α′.

For β a limit cardinal, σαβ = (σβα)∗.

Definition For 〈α, β〉 admissable, ηαβ = tp(L), where L =
⋃
n∈ω Ln and L0 ⊂ L1 ⊂ ... are

defined recursively: L0 = σαβ, and Ln+1 is obtained by inserting a copy of σαβ into every empty

interval in Ln.

Remark: The non-uniqueness of σαβ in the limit cardinal cases is not important because, as will

be shown in Thm 3.6, the resulting ηαβ is unique (up to ≡-equivalence).

Remark: It is easy to see that ηℵ1ℵ1 is countable, dense and unbounded, so by Lemma 3.1 (i),

ηℵ1ℵ1 = η. This observation may provide you with some intuition in the following lemmas.

Lemma 3.3. Let L be a linear order of type ηαβ for some (admissable) 〈α, β〉, then:

(i) ηαβ ∈M.

(ii) α∗ 6≤ ηαβ and β 6≤ ηαβ.

(iii) ∀x < y ∈ L,α′ ≤ (x, y) for all ordinals α′ < α∗ and β′ ≤ (x, y) for all ordinals β′ < β.

Proof (i) We want to show that L is a countable union of scattered orders, so it suffices to
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show that Ln is scattered ∀n ∈ ω. We do this by induction on n. L0 is scattered since σαβ ∈ S2

(immediate from definitions).

For n > 0, observe that tp(Ln) =
∑

x∈Ln−1
φx where:

φx =


1 + σαβ, if ∃y such that (x, y) is empty

1 otherwise

By the inductive hypothesis Ln−1 is scattered, so by Lemma 3.1 (ii), Ln is scattered.

(ii) We prove that β 6≤ ηαβ; the α∗ case is symmetric. Recall that β is regular since 〈α, β〉 is

admissable.

First, we show by induction that β 6≤ tp(Ln) for all n ∈ ω. For n = 0, we have β 6≤ σαβ by Lemma

3.1 (iii) applied to the definition of σαβ. For n > 0, use the sum in part (i): tp(L) =
∑

x∈Ln−1
φx.

From the n = 0 case, β 6≤ φx for all x, and by the inductive hypothesis β 6≤ Ln−1. Hence, by

Lemma 3.1 (iii), β 6≤ Ln.

Since β is uncountable, ω < β, hence we can apply Lemma 3.1 (iv) to conclude that β 6≤

tp
(⋃

n∈ω Ln
)

= ηαβ.

(iii) Again, we will only show this for β, with the α∗ case being symmetric. Let x < y ∈ L.

Then x, y ∈ Ln for some n. Since Ln is scattered (from part (i)), there will be x′, y′ ∈ Ln s.t.

x < x′ < y′ < y and (x′, y′) is empty in Ln. But then, by definition, σαβ ⊂ (x′, y′) in Ln+1, so

σαβ ⊂ (x, y) in L. Hence, and by the definition of σαβ, we get that all cardinals less than β are

embeddable in (x, y) for any (x, y) ∈ L.

To show that β′ ≤ (x, y) for all x < y ∈ L and for all ordinals less than β, we use ordinal

induction. So let β′ < β and by the induction hypothesis assume that γ ≤ (x, y) ∀x < y ∈ L

and ∀γ < β′.

So pick any x < y ∈ L. Since cofinalities are cardinals, cf(β′) ≤ (x, y); let f : cf(β′) → (x, y)

be an embedding. If β′ = cf(β′) then we would be done, so assume that cf(β′) < β′. Then

β′ =
∑

δ∈cf(β′) γδ, where for all δ, γδ < β′. By the inductive hypothesis, γδ can be embedded

into any interval in L, so in particular, it can be embedded into (f(δ), f(δ+)); let gδ be such an
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embedding. But then ‘gluing together’ these gδ gives an embedding of β′ into (x, y), as required.

�

Lemma 3.4. Let L and M be linear orders. If L satisfies Lemma 3.3 (iii) and if tp(M) satisfies

Lemma 3.3 (i), (ii), then M ≤ L.

Proof First, we claim that if M ′ is a scattered ordering satisfying Lemma 3.3 (ii), then there

is an embedding f : M ′ → L s.t. for all Dedekind cuts (M ′1,M
′
2) of M , there exists an interval

(x1, x2) ⊂ L, s.t.

y1 ∈M ′1, y2 ∈M ′2, x ∈ (x1, x2)⇒ f(y1) < x < f(y2) (∗)

We prove the claim by induction on the recursive hierarchy of the scattered types (Thm 3.2).

The claim is trivial for S0. For the induction step, we must first show the claim holds for well-

orders less than β; by a symetrical argument, the claim holds for converse well-orders less than

α∗.

So let γ < β be a well-order. Since L satisfies (iii), there exists an embedding g : γ → L.

The only way this g cannot satisfy the claim is if there is a limit ordinal δ ∈ γ such that

sup{g(ζ) : ζ < δ} = g(δ); in this case there would be no interval (x1, x2) satisfying (∗) for the

Dedekind cut ({ζ < δ}, {ζ ≥ δ}). To fix this, you consider g′ : γ → L where g′(δ) = g(δ + 1).

Then, sup{g′(ζ) : ζ < δ} = g(δ) < g(δ + 1) = g′(δ). Hence, the interval (g(δ), g(δ + 1)) satisfies

(∗) for the cut ({ζ < δ}, {ζ ≥ δ}), and we have got an appropriate embedding.

(There is a very minor point, which is that if γ is a successor, then δ + 1 can equal γ, so

g′(δ) would not be defined. This is easily fixed though, by originally considering an embedding

g : (γ + 1)→ L).

To complete the claim, let M ′ be a scattered type satisfying (ii). Then (by Thm 3.2), M ′ =∑
δ∈γM

′
δ, where γ < β (the case γ < α∗ is symmetric). To embed M ′ into L as per the claim,

you first embed γ into L, using g, say. Then (by the induction hypothesis and noting that any

interval of L satisfies (iii)) embed M ′δ into (g(δ), g(δ + 1)), using fδ, say. Then finally, ‘glue

together’ the fδ to get the required f : M ′ → L. (C.f. proof of Lemma 3.3 (iii)). This completes
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the proof of the claim.

As tp(M) ∈ M, M =
⋃
n∈ωMn where Mn are scattered and WLOG, the Mn are pairwise

disjoint. Let f0 : M0 → L be an embedding as per the claim; for (M ′,M ′′) a Dedekind cut of

M0, let F ((M ′,M ′′)) denote an interval in L satisfying (∗).

We extend f0 to f1 : M0 ∪M1 → L so that f1 also satisfies the conditions of the claim. To do

this, first observe that we can partition M1 into intervals Mδ so that for each δ, there is a unique

Dedekind cut (M ′δ,M
′′
δ ) of M0 such that y ∈ Mδ, y

′ ∈ M ′δ and y′′ ∈ M ′′δ ⇒ y′ < y < y′′. But

then (noting that any interval of L also satisfies Lemma 3.3 (iii)), we can appropriately embed

each Mδ into F ((M ′,M ′′)), thus giving us the extension f1.

We then extend f1 to f2 : M0 ∪M1 ∪M2 → L so that f2 satisfies the conditions of the claim, in

the same manner. We continue this process (i.e. use induction), thus giving us an embedding

f : M → L, as required. �

Corollary 3.5. ψ ≤ ηαβ ⇐⇒ ψ ∈M, β 6≤ ψ, and α∗ 6≤ ψ.

Proof ⇒: Follows from Lemma 3.3 (i) and (ii).

⇐: Follows from Lemma 3.3 (iii) and Lemma 3.4. �

Theorem 3.6. (Uniqueness of ηαβ) If M is a linear order of type ψ 6= 0, 1 and if there exists

〈α, β〉 such that M and ψ satisfy Lemma 3.3 (i), (ii) and (iii) (in place of L and ηαβ), then

〈α, β〉 is admissable and ψ ≡ ηαβ.

Proof Since ψ ∈M, write M =
⋃
n∈ωMn where Mn are scattered.

β (and by symmetry, α) is uncountable: We will show that ω ≤M , which implies, by (ii), that

β > ω i.e. β is uncountable. By assumption |M | > 1, so by (ii), β > 2. Hence, by (i), M is

dense. Now let x < y ∈M . We construct an infinite increasing sequence in M (which essentially

is an embedding of ω) by letting x0 = x, then by density let x1 ∈ (x0, y), then by density let

x2 ∈ (x1, y), and so on.

β (and by symmetry, α) is regular: If not, then like the proof of Lemma 3.3 (iii), we can write β
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as a cf(β) sum of smaller ordinals and hence, by using (iii),we can embed β into M , contradicting

(ii).

max{α, β} is a successor: Suppose it is a limit cardinal and, WLOG, suppose β is the maximum,

the other case being symmetric. By (iii), all cardinals less than β can be embedded in M . Since

β is a limit cardinal, this means |M | ≥ β. As β is regular and uncountable, we can apply Lemma

3.1 (iv) to conclude that |Mn| ≥ β for some n. Then by Lemma 3.1 (v), β or β∗ ≤Mn, so β or

β∗ ≤M , contradicting (ii) (since β = max{α, β}, β∗ ≤M ⇒ α∗ ≤M).

ψ ≡ ηαβ: Immediate from Lemma 3.4. �

Corollary: (ηαβ)2 ≡ ηαβ and for any x < y ∈ L (where tp(L) = ηαβ), tp((x, y)) ≡ ηαβ.

Definition For 〈α, β〉 admissable, Dαβ =def {φ ∈M : φ < ηαβ}.

Lemma 3.7. A Dαβ sum of members of Dαβ is in Dαβ.

Proof Let tp(M) ∈ Dαβ and for each x ∈ M , let φx ∈ Dαβ. Then we want to show that∑
x∈M φx ∈ Dαβ. Clearly,

∑
x∈M φx ≤

∑
y∈N ηαβ, where tp(N) = ηαβ. But

∑
y∈N ηαβ =

(ηαβ)2 ≡ ηαβ, so we get
∑

x∈M φx ≤ ηαβ. If ηαβ ≤
∑

x∈M φx, then, just like in Lemma 3.1

(ii), we must have ηαβ ≤ M or ηαβ ≤ φx for some x, but neither of these is possible. Hence,

ηαβ 6≤
∑

x∈M φx, and so
∑

x∈M φx < ηαβ, as required. �

Theorem 3.8. Dαβ =
⋃
γ∈On(Dαβ)γ, where (Dαβ)γ is defined recursively: (Dαβ)0 = {0, 1} and

for γ > 0, φ ∈ (Dαβ)γ ⇐⇒def φ is an α′ sum for α′ < α∗, or, a β′ sum for β′ < β, or, an ηα′β′

sum for 〈α′, β′〉 < 〈α, β〉, of elements of
⋃
δ<γ(Dαβ)δ.

Remark: This is the recursive characterisation of M that has previously been referred to.

Remark: This result is due to Galvin (unpublished), and was communicated to Laver in writing.

Remark: A lot of the proof is identical to the proof of Thm 3.2, hence, I will skip over details

which add nothing new.

Proof Let Cαβ =
⋃
γ∈On(Dαβ)γ . We will show that Cαβ ⊆ Dαβ and Dαβ ⊆ Cαβ.
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Cαβ ⊆ Dαβ: By Lemma 3.3 and 3.5, α′ ∈ Dαβ for all α′ < α∗, β′ ∈ Dαβ for all β′ < β and

ηα′β′ ∈ Dαβ for all 〈α′, β′〉 < 〈α, β〉. Hence, we use ordinal induction and Lemma 3.7 to conclude

that Cαβ ⊆ Dαβ (c.f Thm 3.2).

Dαβ ⊆ Cαβ. First, a Cαβ sum of elements of Cαβ is in Cαβ (c.f. Thm 3.2). Then let L be a

linear order with tp(L) ∈ Dαβ. Define a relation ∼ on L: let x ∼ y iff x = y, or, x < y and

tp((x, y)) ∈ Cαβ, or, y < x and x ∼ y. ∼ is an equivalence relation which partitions L into

intervals. If |x| is an equivalence class of ∼, then tp(|x|) ∈ T (c.f. Thm 3.2).

I claim that there is in fact only one equivalence class, L, which gives the theorem. Suppose

the claim is false. Let L′ be the set of equivalence classes of L, ordered by |x| ≤ |y| iff x ≤ y.

For any distinct |x|, |y| ∈ L′, tp((|x|, |y|)) 6∈ Cαβ (∗). Otherwise tp(x, y) would be a Cαβ sum of

elements of Cαβ, which, contradicts x 6∼ y.

Now, since tp(L′) ∈ Dαβ, and by Thm 3.6, there exists an interval (|x0|, |y0|) into which some

β′ < β or some α′ < α∗ cannot be embedded. Suppose it is the first (with the α∗ case being

symmetric) and choose β′ to be minimal, so that every β′′ < β′ can be embedded in every interval

of L′. Now let α′ ≤ α be the least γ such that there exists a subinterval (|x1|, |y1|) ⊆ (|x0|, |y0|)

into which γ∗ cannot be embedded. So we have:

(i) tp((|x1|, |y1|)) ∈M,

(ii) β′ 6≤ (|x1|, |y1|) and α′∗ 6≤ (|x1|, |y1|), and

(iii) For all |x2| < |y2| ∈ (|x1|, |y1|), β′′ ≤ (|x2|, |y2|) for all β′′ < β′ and α′′ ≤ (|x2|, |y2|) for all

α′′ < α′∗.

Hence, by Thm 3.6, tp((|x1|, |y1|)) = ηα′β′ , which is certainly in Cαβ, contradicting (∗). �
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4 The Main Theorem

The purpose of this chapter is prove the main theorem of the essay. In order to state the theorem,

we must first introduce the basic notions regarding Q-orders. These are all straightforward

extensions of definitions in Chapter 3.

Definition Let Q be a QO. A Q-labelled linear order, abbreviated to Q-order, is a pair 〈L, l〉

where L is a linear order and l is a function from L to Q; intuitively, you are labelling each

element of L with an element from Q. Two Q-orders 〈L, l〉 and 〈M, l′〉 are isomorphic iffdef

there is a bijective, order-preserving f : L → M such that ∀x ∈ L, l(x) = l′(f(x)). The Q-type

of 〈L, l〉, written tp(〈L, l〉), is the class of Q-orders isomorphic to 〈L, l〉.

In this essay, we will use Φ,Ψ,Θ and χ to range over Q-types.

Definition f : L → M embeds 〈L, l〉 into 〈M, l′〉 iffdef f is injective, order preserving, and

∀x ∈ L, l(x) ≤Q l′(f(x)). Φ ≤ Ψ iffdef there exists 〈L, l〉, 〈M, l′〉 and f : L → M such that

tp(〈L, l〉) = Φ, tp(〈M, l′〉) = Ψ and f embeds 〈L, l〉 into 〈M, l′〉.

Definition The ordered sum
∑

x∈M 〈Lx, lx〉 is the Q-order obtained by replacing each x ∈M by

〈Lx, lx〉. Similarly,
∑

x∈M Φx is the type of
∑

x∈M 〈Lx, lx〉 where tp(〈Lx, lx〉) = Φx for all x ∈M .

Definition If Φ = tp(〈L, l〉), the base of Φ is tp(L). For φ ∈ LO, Qφ(Q≤φ, Q≡φ) isdef the set

of Q-types Φ such that bs(Φ) = φ (≤ φ,≡ φ). If R ⊆ LO, then QR is the set of Q-types Φ such

that bs(Φ) ∈ R.

Remark: Where no confusion arises, we sometimes abuse notation by writing Φ (or φ) when we

really mean a Q-order of type Φ (or linear order of type φ).

Now we are ready to state the main theorem of the essay:

Theorem Q BQO implies QM BQO.

Before continuing, we provide a sketch of the structure of the proof. The proof is given by the

following chain of implications:

26



(i) (ii) (iii) (iv) (v)
Q BQO =⇒ Q+BQO =⇒ τQ+ BQO =⇒ H(Q) BQO =⇒ H(Q)<ω BQO =⇒ QM BQO

(where Q+ and H(Q) are to be defined). A few anticipatory remarks:

1) We already have (ii) and (iv), by Cor 2.13 and Thm 2.11 (v).

2) (i) will be immediate from the definition of Q+ and Thm 2.11 (ii) (iii) and (iv).

3) (iii) is a fairly simple induction, and makes sense of the definition of Q+.

4) The proof of (v) is where we require the use of the recursive characterisation of M and of

Q-labelled LOs, (as opposed to non-labelled LOs).

In order to construct H(Q), we first need to introduce a couple of constructions. We also prove

a simple lemma for each construction; these lemmas are central in proving (iii).

Definition Let U be a set of Q-types and κ an infinite cardinal. Then Φ is an unbounded (U , κ)-

sum, abbreviated to (U , κ)-sum, iffdef Φ can be written as
∑

x∈L Φx where tp(L) = κ, {Φx : x ∈

M} = U and ∀x ∈ L, ∃Y ⊆ L s.t. |Y | = κ and y ∈ Y ⇒ Φx ≤ Φy. We refer to this last

condition as unboundedness. You get a (U , κ∗)-sum by replacing κ with κ∗ in the definition.

Lemma 4.1. Let δ ∈ RC, κ ≤ δ be an infinite cardinal and U ,V be sets of Q-types such that

∀Θ ∈ U ∃χ ∈ V s.t. Θ ≤ χ. Then, if Φ is a (U , κ)-sum and Ψ is a (V, δ)-sum (or, if Φ is a

(U , κ∗)-sum and Ψ is a (V, δ∗)-sum), then Φ ≤ Ψ.

Proof Write Φ and Ψ as (U , κ) and (V, δ) sums (the κ∗, δ∗ case is symmetric): Φ =
∑

x∈L Φx

and Ψ =
∑

y∈M Ψy. We define an embedding f : Φ → Ψ by induction on L (noting that

tp(L) = κ); so suppose we have defined f on an initial segment
∑

x<x0
Φx of Φ to an initial

segment
∑

y<y0
Ψy of Ψ. We want to extend f so it is defined on

∑
x≤x0 Φx and to some initial

segment of Ψ.

To get the extension, it suffices to find y ∈ M s.t. y ≥ y0 and Φx0 ≤ Ψy. By definition of an

unbounded sum, Φx0 ∈ U . By assumption, ∃χ ∈ V s.t. Φx0 ≤ χ. Again by the definition of

an unbounded sum, there exists some y1 ∈ M s.t. Ψy1 = χ. By unboundedness, there exists δ

many y ∈ M s.t. Ψy ≥ Ψy1 . Hence, and since κ ≤ δ and δ is regular, there exists y > y0 s.t.

Ψy ≥ Ψy1 = χ ≥ Φx0 , as required.
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Note that for γ < κ, the limit of a γ sequence of initial segments of M is itself an initial

segment of M , because κ ≤ δ and δ is regular. Hence, the induction does succeed in defining

the embedding on the whole domain. �

Definition Let U be a set of Q-types and let Φ be a U-type, i.e. Φ = tp(〈L, l〉) where L is a

linear order and l : L→ U . Then Φ =def
∑

x∈L l(x).

Remark: We regard U as a subclass of the class of Q-types, so it is quasi-ordered by embed-

dability. Therefore, ‘U-type’ is a well-defined concept.

Remark: Observe that if Φ ≤ Ψ are U-types, then Φ ≤ Ψ.

Definition Let Q be a quasi-order and 〈α, β〉 be admissable. A Q-type Φ is (Q,α, β)-maximal

iffdef Φ ∈ Q≡ηαβ and whenever Ψ ∈ Q≤ηαβ we have Ψ ≤ Φ.

Definition Let U be a set of Q-types (recall that U is a quasi-order). A Q-type Φ is a (U , α, β)

maximal sum, or a (U , α, β)-sum for short, iffdef there exists a U-type Ψ such that Ψ is (U , α, β)-

maximal and Φ = Ψ.

Lemma 4.2. Let U ,V be sets of Q-types such that ∀Θ ∈ U ∃χ ∈ V s.t. Θ ≤ χ. Also let

〈α, β〉 ≤ 〈γ, δ〉. Then Φ a (U , α, β)-sum and Ψ a (V, γ, δ)-sum implies Φ ≤ Ψ.

Proof We have Φ =
∑

x∈L Θx where tp(L) ≡ ηαβ and Θx ∈ U for all x. By assumption, ∃χx ∈ V

such that Θx ≤ χx for all x. Hence, Φ ≤
∑

x∈L χx = Ψ0, say. Let Ψ′0 ∈ V≡ηαβ be the type of

〈L, l〉, where l(x) = χx for all x, so that Ψ′0 = Ψ0.

Now, since Ψ is a (V, γ, δ)-sum, let Ψ′ be (V, γ, δ)-maximal such that Ψ′ = Ψ. Since 〈α, β〉 ≤

〈γ, δ〉, Ψ′0 ∈ V≤ηγδ , so by the definition of (V, α, β)-maximal, Ψ′0 ≤ Ψ′. Hence,

Φ ≤ Ψ0 = Ψ′0 ≤ Ψ′ = Ψ, as required.

�

The last precursor to the definition of H(Q):

Definition We write 0 for the Q-type with base 0. We write 1q for tp(〈{x}, l〉) where l(x) = q.
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Definition H(Q) =
⋃
α∈OnHα(Q), where Hα(Q) is defined recursively by:

H0(Q) = {0} ∪ {1q : q ∈ Q},

Hα(Q) =
{

Φ ∈ QM : ∃U ⊆
⋃
β<αHβ(Q) s.t. Φ is a (U , κ) or (U , κ∗) sum for some κ ∈ RC,

or, Φ is a (U , γ, δ) sum for admissable 〈γ, δ〉
}

, for α > 0.

Remark: Unlike S orM, H(Q) is not ‘closed downwards’: ∃Φ ≤ Ψ ∈M s.t. Ψ ∈ H but Φ 6∈ H.

This is why bs(Φ) needs to only be equivalent to ηαβ for Φ to be (Q,α, β)-maximal; if we forced

bs(Φ) to be equal to ηαβ, then we miss those Φ whose base is equivalent but not equal to ηαβ.

One cannot be blamed if intuition is lacking for this beastly construction. Some ease may be

brought by the fact that if Q is BQO, then H(Q) is the class of indecomposable elements of

QM, where Φ is indecomposable if Φ1 + Φ2 = Φ⇒ Φ ≤ Φ1 or Φ ≤ Φ2. This fact may also help

understand why Thm 4.7 is true.

Next we define Q+.

Definition Let A = {aκ : κ ∈ RC}, B = {bκ : κ ∈ RC} and C = {cαβ : 〈α, β〉 admissable},

which are quasi-ordered as follows: aκ ≤ ak′ ⇔ κ ≤ κ′ ⇔ bκ ≤ bκ′ and cαβ ≤ cα′β′ ⇔ 〈α, β〉 ≤

〈α′, β′〉. Then, Q+ is the disjoint union of Q,A,B and C.

Remark: In the case that Q+ is not disjoint with A,B or C (e.g. aκ ∈ Q), one relabels the

elements of Q (e.g. replace aκ with dκ) to ensure that we do indeed get a disjoint union.

Lemma 4.3. Q BQO ⇒ τQ+.

Proof By Thm 2.11 (ii) A and B are BQO, and, by Thm 2.11 (ii) and (iv) C is BQO. Then by

Thm 2.11 (iii), Q+ is BQO. Then by Cor 2.13, τQ+ is BQO. �

Before proving τQ+ BQO ⇒ H(Q) BQO, we first establish some notation. Recall that ρ(T ) is

the root of the tree T , S(x) is the set of immediate successors of x, and br(x) is the subtree

rooted at x.

Definition Let q ∈ Q and τ ′ be a subset (not a subclass!) of τQ. Then [q; τ ′] =def (T, l) ∈ τQ

where l(ρ(T )) = q, {br(x) : x ∈ S(ρ(T ))} = τ ′, and for x, y ∈ S(ρ(T )), br(x) = br(y)⇒ x = y.
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Definition For q ∈ Q, 1q isdef the one element tree labelled by q.

Lemma 4.4. τQ+ BQO ⇒ H(Q) BQO

Proof We start by definining a function T : H(Q) → τQ+ , by induction on H(Q). For

H0(Q), T (0) = the empty tree, and ∀q ∈ Q,T (1q) = 1q. Now let Φ ∈ Hα(Q) for α > 0.

By definition, for some U ⊆
⋃
β<αHα(Q), either:

(i) Φ is a (U , κ)-sum for some κ ∈ RC; then we let T (Φ) = [aκ; {T (Θ) : Θ ∈ U}],

(ii) Φ is a (U , κ∗)-sum for some κ ∈ RC; then we let T (Φ) = [bκ; {T (Θ) : Θ ∈ U}], or,

(iii) Φ is a (U , α, β)-sum for some admisable 〈α, β〉; then we let T (Φ) = [cαβ; {T (Θ) : Θ ∈ U}].

Claim: Let Φ ∈ Hα(Q) for some α,Ψ ∈ Hβ(Q) for some β, and T (Φ) ≤m T (Ψ). Then, Φ ≤ Ψ.

Proof of claim: Let (T1, l1) = T (Φ) and (T2, l2) = T (Ψ). We prove the claim by induction, so

assume we have the result for all 〈α′, β′〉 < 〈α, β〉. and let f : T (Φ) → T (Ψ) be an embedding.

If T1 is empty, then the claim is trivially true, so from now on assume T1 non-empty.

First suppose that f(ρ(T1)) = x 6= ρ(T2). Then f is an embedding from T (Φ) to br(x). But

observe that br(x) must equal T (χ), for some χ ∈ Hγ(Q), where γ < β and χ ≤ Ψ. Then, by

the induction hypothesis, we get Φ ≤ χ, so, Φ ≤ Ψ.

Now suppose f(ρ(T1)) = ρ(T2). We have four cases:

Case 1: l(ρ(T1)) = q for some q ∈ Q, and since f is an embedding, l(ρ(T2)) = q′ ≥ q. Then,

T (Φ) = 1q, T (Ψ) = 1q
′
, so Φ = 1q ≤ 1q′ = Ψ.

Case 2: l(ρ(T1)) = aκ for some κ ∈ RC, and so l(ρ(T2)) = δ ∈ RC such that κ ≤ δ. By definition

of T , we have: Φ is a (U , κ)-sum, where U = {Θ : T (Θ) = br(x) for some x ∈ S(ρ(T1))}, and,

Ψ is a (V, δ)-sum, where V = {χ : T (χ) = br(y) for some y ∈ S(ρ(T2))}.

Since f is an embedding, ∀x ∈ S(ρ(T1)), ∃y ∈ S(ρ(T2)) such that br(x) ≤ br(y). Hence, and by

the inductive hypothesis, ∀Θ ∈ U ∃χ ∈ V s.t. Θ ≤ χ. Then, by Lemma 4.1, Φ ≤ Ψ.

Case 3: l(ρ(T1)) = bκ for some κ ∈ RC. Identical to Case 2 but with (U , κ∗) and (V, δ∗)-sums.

Case 4: l(ρ(T1)) = cαβ for some 〈α, β〉 and so l(ρ(T2)) = cγδ such that 〈α, β〉 ≤ 〈γ, δ〉. By
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definition of T , we have that Φ a (U , α, β)-sum and Ψ a (V, γ, δ)-sum where, just like in Case

2, ∀Θ ∈ U ∃χ ∈ V s.t. Θ ≤ χ. Then, by Lemma 4.2, Φ ≤ Ψ. This concludes the proof of the

claim.

But then considering f : T“(H(Q)) ⊂ τQ+ → H(Q), where f(T ) is mapped to some Φ s.t.

T (Φ) = T , we can apply the homomorphism property to conclude that τQ+ BQO ⇒ H(Q)

BQO. �

Our final task is to prove that H(Q) BQO =⇒ QM BQO. The following theorem is used in

Thm 4.7 to reduce the case bs(Φ) ≡ ηαβ to the case bs(Φ) < ηαβ. We note that Laver had only

proved the result in the case α = β = ω1; the full result was supplied to him by Galvin.

Theorem 4.5. Let Q be WQO. Then Φ ∈ Q≡ηαβ ⇒ Φ is a Dαβ-sum of 1q’s and (R,α′, β′)-

maximal types, where R ⊆ Q and 〈α′, β′〉 ≤ 〈α, β〉.

Remark: The structure of the proof is the same as that of Thm 3.2 and 3.8 (the recursive

characterisations of S and M), so as in Thm 3.8, unhelpful details will not be included.

Proof Say Φ is nice if it is a Dαβ-sum of 1q’s and (R,α′, β′)-maximal types, where R ⊆ Q and

〈α′, β′〉 ≤ 〈α, β〉, so the theorem becomes Φ ∈ Q≡ηαβ ⇒ Φ is nice. We prove the theorem by

induction on WQOs (Thm 2.3), so suppose that ∀q ∈ Q, the theorem holds for Qq(= {r ∈ Q :

p 6≤ r}).

Start by observing that a Dαβ-sum of nice types is nice, by Lemma 3.7 (a Dαβ-sum of types in

Dαβ is in Dαβ). Now let Φ ∈ Q≡ηαβ and 〈L, l〉 have type Φ. Define a relation ∼ on L: let x ∼ y

iff x = y, or, x < y and tp((x, y)) is nice, or, y < x and x ∼ y. ∼ is clearly an equivalence

relation which partitions L into intervals.

If |x| is an equivalence class of ∼, then tp(|x|) is nice. To show this, you write |x| as a γ∗ + δ

sum of 1q’s and sub-intervals (c.f. Thm 3.2). Since tp(L) ≡ ηαβ, and by Lem 3.4, γ < α and

δ < β, so in particular, γ∗+ δ ∈ Dαβ. Hence, tp(|x|) is Dαβ-sum of nice types, so tp(|x|) is nice.

Hence, if L itself is one equivalence class, then we are done. So from now assume this is not the

case. Let L′ be the set of equivalence classes of L, ordered by |x| ≤ |y| iff x ≤ y. Now if (|x|, |y|)
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is any interval in L′, then tp((|x|, |y|)) ≡ ηαβ. Otherwise, tp((|x|, |y|)) ∈ Dαβ, so then we could

write (x, y) as a Dαβ-sum of nice types, contradicting x 6∼ y.

Furthermore, ∀q ∈ Q,∃z ∈ L s.t. |z| ∈ (|x|, |y|) and l(z) ≥Q q (∗). Otherwise, ∃q ∈ Q such

that {z ∈ L : |z| ∈ (|x|, |y|)} = {z ∈ L : |z| ∈ (|x|, |y|) and l(z) ∈ Qq} = Z, say. Then by

the induction hypothesis, tp(〈Z, l|Z〉) is nice. But then, as before, we could write (x, y) as a

Dαβ-sum of nice types, contradicting x 6∼ y.

We now claim that Φ is in fact (Q,α, β)-maximal. First, fix some interval (|x|, |y|) ⊂ L′. Since

tp((|x|, |y|)) = ηαβ ≡ η2αβ, there exists disjoint subintervals (|xu|, |yu|) for each u ∈ ηαβ such that

if a < b, |z| ∈ (|xa|, |ya|), |z′| ∈ (|xb|, |yb|) then z < z′.

To prove the claim, suppose tp(〈M, l′〉) ∈ Q≤ηαβ ; we want to find g which embeds this into

〈L, l〉. Letting f : M → ηαβ be an embedding, define g : M → L by sending m ∈ M to some

z ∈ L s.t. |z| ∈ (|xf(m)|, |yf(m)|) and l′(z) ≥ l(u); this is possible by (∗). Hence, tp(〈M, l′〉) ≤ Φ,

and so Φ is (Q,α, β)-maximal, as claimed. But then Φ is nice, thus completing the proof.

(Strictly, the proof continues: Φ nice implies L is a ∼-equivalence class, contradicting our

assumption that L is not an equivalence class. Hence, L is an equivalence class, which implies

Φ is nice, as required). �

We also require the following straightforward lemma in Thm 4.7.

Lemma 4.6. If χ ∈ Hγ(H(Q)) (where H(Q) is a QO by regarding it as a subclass of QM), then

χ ∈ H(Q).

Proof We prove this by induction on γ. If γ = 0, the result is trivial. Before continuing, observe

that if χ =
∑

l∈L χl, then, χ =
∑

l∈L χl. Now, let γ > 0 and χ ∈ Hγ(H(Q)).

If χ is a (U , κ)-sum for some regular κ: Since Θ ≤ Θ′ ⇒ Θ ≤ Θ′, it is clear that χ is a(
{Θ : Θ ∈ U}, κ

)
-sum. By the induction hypothesis, Θ ∈ H(Q) for all Θ ∈ U , hence, χ ∈ H(Q).

If χ is a (U , κ∗)-sum for some regular κ: A symmetric argument gives χ ∈ H(Q).

If χ is a (U , α, β)-sum for some admissable 〈α, β〉: Then χ = Φ where Φ ∈ U≡ηαβ is ((U , α, β))-
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maximal, so:

χ =
∑
x∈L

l(x), where tp(〈L, l〉) = Φ.

⇒ χ =
∑
x∈L

l′(x), where for all x, l′(x) = l(x)

⇒ χ = Φ′, where Φ′ = tp(〈L, l′〉).

It is clear that Φ′ ∈ U ′≡ηαβ , where U ′ = {Θ : Θ ∈ U}, and further that Φ′ is (U ′, α, β)-maximal.

Hence, χ is a (U ′, α, β)-sum. As before, the induction hypothesis implies that U ′ ⊂ H(Q), and

so χ ∈ H(Q). �

The next theorem is where the recursive characterisation of M is used and where the need for

using Q-orders arises.

Theorem 4.7. For all admissable 〈α, β〉, if Φ ∈ Q≤ηαβ and Q BQO, then Φ is a finite sum of

members of H(Q).

Proof We prove this by induction, so assume the result holds for all admissable 〈α′, β′〉 < 〈α, β〉.

We first show the theorem holds for Φ ∈ QDαβ , using the recursive characterisation of Dαβ, and

then for Φ ∈ Q≡ηαβ , by using Thm 4.5 to reduce it to the Φ ∈ QDαβ case.

So our first task is to show that ∀γ,Φ ∈ Q(Dαβ)γ and Q BQO implies Φ is a finite sum of H(Q)’s.

We do this by induction on γ. The case γ = 0 is trivial, so let Φ ∈ Q(Dαβ)γ for γ > 0. By

Thm 3.8, bs(Φ) is either a β′-sum for β′ < β, an α′-sum for α′ < α∗, or, an ηα′β′-sum for

〈α′, β′〉 < 〈α, β〉 of elements of
⋃
γ′<γ(Dαβ)γ′ .

Case 1: bs(Φ) is a β′-sum, so Φ =
∑

x∈L Φx where tp(L) = β′ and Φx ∈
⋃
γ′<γ(Dαβ)γ′ . By the

(second) induction hypothesis, each Φx is a finite sum of H(Q)′s. Suppose Φ is not a finite sum

of H(Q)’s. WLOG, β′ is minimal, so that if δ < β′, any δ-sum of finite sums of H(Q)’s is a finite

sum of H(Q)’s.

β′ is infinite, as otherwise Φ would be a finite sum of H(Q)’s. Further, cf(β′) = β′, so, β′ ∈ RC.

To show this, you write Φ =
∑

y∈M Φy where tp(M) = cf(β′) and Φy is a δy-sum for δy < β′

of Φx’s. By minimality of β′, each Φy is a finite sum of H(Q)’s, and by minimality of β′ again,

33



we conclude that cf(β′) = β′. Since for any nδ ∈ ω,
∑

δ<β′ nδ = β′, we can write Φ =
∑

x∈L Φ′x

where each Φ′x ∈ H(Q).

Next we claim that there exists x′ ∈ L such that
∑

x>x′ Φ
′
x is a ({Φ′x : x > x′}, β′)-sum. Assume

this is false. Since the other conditions are easily seen to be true, the claim can fail only if ∀x′ ∈

L,
∑

x>x′ Φ
′
x is not unbounded, i.e. if ∀x′ ∃y > x′ s.t.

∣∣{u ∈ L : y < u,Φ′y ≤ Φ′u}
∣∣ < β′. Hence,

(and by regularity of β′), ∀x′ ∃y = y(x′) > x′ ∃z = z(y) such that u ≥ z(y)⇒ Φ′y(x′) 6≤ Φ′u.

Now we can create a bad sequence Φ′y0 ,Φ
′
y1 , . . . in H(Q): Pick any x′ ∈ L. Let y0 = y(x′), y1 =

y(z(y0)), y2 = y(z(y1)), and so on. But Q BQO, so by Lemma 4.3, 4.4 and Thm 2.11 (i), H(Q)

WQO, so no bad sequence can exist in H(Q). Contradiction. Hence, ∃x′ ∈ L s.t.
∑

x>x′ Φ
′
x is

a ({Φ′x : x > x′}, β′)-sum.

Hence,
∑

x>x′ Φ
′
x ∈ H(Q), by the definition of H(Q) and the fact Φ′x ∈ H(Q) for all x ∈ L.

So we have: Φ =
(∑

x≤x′ Φ
′
x

)
+ Ψ, some Ψ ∈ H(Q). But tp({x ∈ L : x ≤ x′}) < β′, so by

minimality of β′, we conclude that Φ is a finite sum of H(Q)’s. This contradicts our initial

supposition, so Φ is indeed a finite sum of H(Q)’s.

Case 2: bs(Φ) is an α′-sum for α′ < α∗. This case is symmetric to Case 1.

Case 3: bs(Φ) is an ηα′β′-sum for 〈α′, β′〉 < 〈α, β〉, so we have Φ =
∑

x∈ηα′β′
Φx, where each

Φx = Φx,0 + . . .+ Φx,nx is a finite sum of H(Q)’s. So then,

Φ =
∑

x∈ηα′β′

(
Φx,0 + . . .+ Φx,nx

)
=

∑
x∈ηα′β′

(
. . .+ 0 + . . .+ Φx,0 + . . . 0 . . .+ Φx,nx + . . .+ 0 + . . .

)
=

∑
x∈ηα′β′

( ∑
y∈ηα′β′

lx(y)

)
,where lx(y) is defined in the obvious way

=
∑

(x,y)∈(ηα′β′ )2
lx(y)

=
∑

x∈ηα′β′
l′(x), for some l′.

The last step is possible since we have (ηα′β′)
2 ≡ ηα′β′ . What has been achieved is a represen-

tation of Φ as χ for some χ ∈ (H(Q))ηα′β′ . Since H(Q) is BQO and 〈α′, β′〉 < 〈α, β〉, we can

apply the (first) induction hypothesis to get χ = χ0 + . . .+ χn where each χi ∈ H(H(Q)). But
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then, Φ = χ0 + . . . + χn, and by Lemma 4.6, each χi ∈ H(Q), so Φ is a finite sum of H(Q)’s.

This completes the Φ ∈ QDαβ case.

Now let Φ ∈ Q≡ηαβ . By Thm 4.5, Φ is a Dαβ-sum of 1q’s and (R,α′, β′)-maximal types, where

R ⊆ Q and 〈α′, β′〉 ≤ 〈α, β〉. But observe that for R ⊆ Q, an (R,α′, β′)-maximal type is a

({1q : q ∈ R}, α′, β′)-sum. Hence, in particular, Φ is a Dαβ-sum of H(Q)′s, so Φ = χ for some

χ ∈ (H(Q))Dαβ . Like in Case 3 above, we use the induction hypothesis and Lemma 4.6 to

conclude that Φ is a finite sum of H(Q)’s, thus concluding the proof. �

We can now prove the main theorem:

Theorem 4.8. Q BQO =⇒ QM BQO.

Proof Let Φ ∈ QM. Then by Cor 3.5 Φ ∈ QDαβ for some (admissable) 〈α, β〉. Then by Thm

4.7, Φ is a finite sum of H(Q)’s. Hence, the function f : H(Q)<ω → QM sending (Φ0, . . . ,Φn)

to Φ0 + . . .+ Φn is surjective; it is also clearly order-preserving. Since Q BQO, we apply Lemma

4.3, 4.4 and Thm 2.11 (v) to get H(Q)<ωBQO, and then by the homomorphism property, we

get QM BQO. �

Corollary 4.9. M is WQO

Proof Let Q = {x} be the one element quasi-order, so QM and M are isomorphic. Since Q is

trivially BQO, Thm 4.8 gives QM 'M BQO, and hence M WQO. �

Remark: One may wonder if we could prove M is BQO by simply proving all the results of

Chapter 4 for the particular case Q = {x}, thus greatly simplifying the proof. However, as

alluded to previously1, this would fail in Thm 4.7. The reason is that in the proof of Thm 4.7,

you need to consider H(Q), so you need to have established the theorems of Chapter 4 for H(Q),

not just Q.

1“The next theorem [Thm 4.7] is [...] where the need for using Q-orders arises.”
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5 Conclusion

Recall how the original purpose was to prove Fräıssé’s conjecture: the class of scattered types is

WQO. It is remarkable that in trying to do so, Laver achieved a much more general result, which

at the same time (inadvertently?) generalises Nash-Williams’ result that Q BQO ⇒ QOn BQO.

It is interesting to note that, in the paper, Laver says he originally proved Fräıssé’s conjecture by

induction on Hausdorff’s characterisation of S (so presumably, he proved QBQO ⇒ QSBQO),

but that Galvin suggested generalising to M with the aid of his (Galvin’s) work.

The paper’s significance does not lie only in the fact that it has resolved Fräıssé’s conjecture (con-

tributing to the general goal of determining which naturally occuring quasi-orders are WQO),

but also in its contribution to the understanding of M.

We conclude by stating a few results that can be proved using Thm 4.5.

Definition Let Q be a QO. For q ∈ Q, |q| = {r ∈ Q : r ≡ p}, and Q≡ = {|q| : q ∈ Q}.

Theorem Suppose Q is BQO and |Q≡| ≤ κ. Then:

(i) If α ∈ On s.t. α < κ+, then |(Qα)≡| ≤ κ.

(ii) If 〈α, β〉 is admissable and max{α, β} ≤ κ, then |(Q≤ηαβ )≡| ≤ κ.

From (i) it is immediate that if Q is BQO and |Q≡| ≤ κ, then |P(Q))≡| ≤ κ.

Definition A type (or Q-type) φ is indecomposable iffdef φ = φ1 + φ2 then φ ≤ φi for some i.

Theorem If Q is BQO, then H(Q) is the class of indecomposable types of M.
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[Lav71] R. Laver, On Fräıssé’s order type conjecture, Ann. of Math. (2), 93 (1971), 89-111.

[Lav78] R. Laver, Better-quasi-orderings and a class of trees, in Studies in foundations and

combinatorics, Vol. 1 of Adv. in Math. Suppl. Stud., 31-48, Academic Press, New

York (1978).

[Mil68] E.C. Milner, Well-quasi-ordering of sequences of ordinal numbers, J. London Math.

Soc., 43 (1968), 291-296.

[Mil85] E.C. Milner, Basic WQO- and BQO-Theory, in Graphs and Orders, (I. Rival ed.),

D. Reidel Publishing Company, (1985), 487-502.

37



[NW63] C.St.J.A. Nash-Williams, On well-quasi-ordering finite trees, Proc. Cam. Phil. Soc.,

59 (1963), 833-835.

[NW65a] C.St.J.A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proc. Cam.

Phil. Soc., 61 (1965), 33-39.

[NW65b] C.St.J.A. Nash-Williams, On well-quasi-ordering infinite trees, Proc. Cam. Phil. Soc.,

61 (1965), 697-720.

[NW68] C.St.J.A. Nash-Williams, On better-quasi-ordering transfinite sequences, Proc. Cam.

Phil. Soc., 64 (1968), 273-290.
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